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1. INTRODUCTION

In general, engineering computations serve to analyze

ecific physical phenomena with the aim of reaching decisions

; ab ut proposed designs; that is, for instance, the expected

. behav r of a construction, its safety features, and similar

concerns. For a general assessment of the structure, quali-

tative results about the displacements, stress-distributions,

etc. are needed with an engineering accuracy of, say 10-20%.

On the other hand, the indicated decisions are based usually

on relatively few data items with a higher accuracy, say, i~n

the range of 2-5%, such as, the displacements or stresses in

certain known critical points, stress-intensity factors, etc.> /

)This work was in part supported under ONR contracts
N0014-77-C-0623 and N0014-80-C-0455 and NSF grant
MCS-78-05299.
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In order to achieve these diverse objectives the sired

?-computational procedures should include - .. 5 Utih--- the

following features:

(.) Facilities for effective and reliable estimation of

the errors of the computed results' These estimates

should correspond to the specific _.ims of the parti-

cular computation.

"' (ti) Adaptively controlled computations3 ln order to

achieve the desired error tolerances--'with a minimal

cost and to reduce the preparatory work required of

the user.

(if) Post-processing facilities which are designed to

allow for the extraction of high-accuracy data items

of the type needed for the critical decisions.

For the solution of classes of linear problems by means

of finite-element approximations, algorithms for all three J
features are now beginning to be well understood. On the

other hand, the nonlinea case is as yet not well developed

and much still needs to be done before satisfactory algorithms

for all three features can be onstructed.

This paper is not intended bQp resent an overview of the

work in this area. Instead we addre1s certain specific

questions relating to the theoretical and computational aspects

of the three features. In particular, the design of effective

adaptive procedures requires a clear understanding of the ob-

jectives that are to be achieved. Accordingly, in Section 2

we discuss some new results abou e concepts of feedback and

adaptivity. In line with the summar nature of this paper,



these results are only illustrated for a one-dimensional,

linear model problem. Then Section 3 addresses their ex-

tension to the more general two-dimensional, linear, elliptic

class of problems which can be solved by the adaptive solver

FEARS. In this generality, some of the results can be tested,

as yet, only experimentally. In Section 4 we then turn to

some of the post-processing approaches for linear problems

which may meet the demands for the third of the indicated de-

sirable features.

All the material in Sections 2 to 4 concerns linear

problems. As noted before, for nonlinear problems, the

corresponding theory is by far not so well developed. In part,

this is due to the fact that the problem-formulations differ

considerably between the two cases. In particular, in practi-

cal nonlinear problems we are faced usually with the need for

considering parametrized systems of equations for which the

solutions form manifolds in the space of the state and para-

meter variables. The problem then becomes the computational

determination of the characteristic features of such solution

manifolds. This is the topic of Section 5. For these para-

metrized equations it is not always readily apparent how to

define the discretization errors needed for the first of our

mentioned features. In Section 6 we present some recent re-

sults about a priori estimates of such discretization errors

which in turn lend themselves to the development of the de-
I.

sired a posteriori estimates. Finally, in Section 7 we

summarize some of the computational approaches which combine

the trace of paths on the solution manifolds with mesh-refine-

ment strategies and hence which may provide the basis for the
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second of the cited facilities in the nonlinear case.

2. FEEDBACK AND ADAPTIVITY

The term "adaptation", or any of its cognates, is widely

used today in scientific computing, but unfortunately it re-

mains a rather ill-defined concept which is often used very

loosely. Various definitions of adaptive processes have been

given in the literature of such fields as automatic control

theory (see eg. [22]) and artificial intelligence (see eg.

[14]). A definition which applies directly to many of the

procedures of numerical analysis is presented in [18]. With-

out entering into the details of the latter definition, we

explain in this section the relevant concepts of feedback and

adaptivity and summarize some of the possible theoretical

results for the case of a simple model problem. The next

section then addresses the extension of these results to more

general problems.

Consider the two-point boundary value problem

d du_2_i

L[u] d - a(x) du + b(x)u - f(x), x e I (0,1), (2.1)

u(O) = uUi) - 0 (2.2)

where

0 < a < a(x) < 3, 0 < b(x) < B, x e I. (2.3)

As usual, we define on HI(I) x K(I) the bilinear form

*B(u,v) aJ(au'v' + buv)dx (2.J4) -

I

and note that the norm on H1 (I) is equivalent with the i

- , ". r i
m=

. . .. , -- ..... ....-
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1/2energy norm I1uIE - (B(u,u)) I . The weak solution

uo C Hl(I) of (2.1)/(2.2) is defined by

B(uo,v) - F(v) f fvdx, V v e HI(I). (2.5)

I

Let F be a family of finite-dimensional subspaces

S C. H(I). For any S e F the approximate solution u(S) E S

of (2.1)/(2.2) is specified by

B(u(S),v) - F(v), V v c S (2.6)

and hence the optimal error achievable with subspaces of F

of a fixed dimension d > 0 is

(Uo,d) - inf{lIuo-u(S)IIE; S e F, dim S - d}. (2.7)

For example, we obtain a set F - Fp by considering all

meshes

A: 0 - A< xI  .. Xm(x) < 1 (2.8)
0 1 MX

and specifying S e Fp as the space of all C0 -functions on I

which are polynomials of degree at most r on each subinterval

I i - [X x1  ], i - l,...,m(A), of A. This selection leads

to the classical h-version of the finite element method for

(2.1)/(2.2) with elements of order r. If we use instead a

fixed mesh but vary the order of the polynomial pieces

sepazately on each subinterval, then we arrive at the p-version

of the method (see eg. [8]).

.A feedback system for (2.1)/(2.2) on some given set F

may be characterized as a process which produces sequences (or

L trajectories) of subspaces {Sk1 C F. This is accomplished



by some transition function T which produces for any index

(time) k the successor Sk+1 : F on the basis of infor-

mation about the sequence up to k.

For a precise definition of this concept we refer to (18).

Here we present only an example of a simple transition

function T a Tp for the case F - Fp. For any S - SA) C Fp

consider for each i, 1 < I < m(A), the exact (weak)

solutions z of (2.1) on IA -L . subject to the

boundary onditions ( u((x_, z(x -, u(x)(xi).
Then the error indicators

, I=zi-u(S(A))IIEIA, i - l,...,m(A), (2.9)

can be computed approximately or estimated from above and

below in terms of the residuals rA - L[u(S)] - f on IA
i V.

Moreover

m(A) A 212
C(A 1 (2.10)

represents an estimator for the error l luo-u(S)IE, (see [4],

[5], [6]). Now a simple mesh-refinement strategy constructs

from A a new mesh A' b,' halving the subinterval I for

which is maximal. This corresponds to the transitionwhich

function T - Tp which produces as the successor T(S(A)) of

the current space S(A) e Fp the space S' a S(A') c Fp.*

,Now any feedback system on a set F will be called an

adaptive system if it is optimal with respect to some per-

formsnce measure, or, more precisely, if under this measure

its performance is not worse than that of any other feedback

system.
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Generally, a performance measure is a function u which

associates with any trajectory (Sk} C F produced by a feed-

back system an element u(S } of a given partially order set

M. In the simplest case we might use the set M - {0,11

which allows us to distinguish only between good (-0) or bad

(-l) performance. Two typical performance measures of this

type may be defined as follows:

[O if lim I uo-(Sk) E  0
k-

{S = (2.11)

1 otherwise

0 if IluOU(Sk)I1E < C *(uo,dim(Sk)),Vk > 0
(Sk I (2.12)

1 otherwise

where in (2.12) the constant C depends on the problem and

the solution uo, but not on k.

These and other measures are discussed in [1], [2], [9].

We mention here only a few partial results for our model

problem phrased not necessarily in their most general form:

Theorem 2.1: For the problem (2.1)-(2.3) and any u0 c H (I)

consider the simple feedback system on F - F defined by the

transition function Tp . Then the resulting trajectories

(S)k satisfy lim I uo-u(Sk)IIl - 0 and hence the system is

adaptive with respect to the performance measure (2.11).

For the performance measure (2.12) more restrictive

conditions are required. In essence, we compare here the

...... .........________________:___



convergence rate for the computed sequence of meshes with an

"ideal" rate. For this we need to know -- irrespective of any

feedback system -- the existence of a sequence of meshes for

which some comparison with the ideal rate applies. We call

this a comparison sequence; its existence is a condition on

the solution u0 c H(I) which we wish to approximate. In

essence, a theorem of the following form can then be proved

(see L9)).

Theorem 2.2: Suppose that the coefficients a,b of (2.1/3) are

sufficiently smooth and that for the given u0  HM(I) there

exists a comparison sequence of meshes with certain properties.

Then, for the feedback system on F p defined by Tp, the re-

sulting trajectories satisfy

Ituoou(Sk) tE 1 C f(uo,dim S(uk)), k > 0

with a constant that depends on the problem and the comparison

sequence, but not on k. Hence, the feedback system is

adaptive under the performance measure (2.12).

The result implies that under the particular conditions

the rate of convergence is independent of the smoothness of

the solution. The conditions of the theorem are not overly

stringent. For example, they hold for u0  xL - x C HI(I),

> , in which case the rate of convergence is of the order

of (dim S(Ak))-r independent of a, (see [9]). We refer also

to (5] for related results.

The simple transition function T used in both theorems

is computatlenally cotly since it modifies the meshes very

little from , t step. Moreover, in practice we can work
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only with a finite segment SI,...,S n  of any trajectory. In

that case, it is reasonable to demand that the computation of
the final approximate solution u(Sn ) is at most, say, twice

or thrice the cummulative cost of the computation up to that

point.

For this we have to introduce an appropriate stopping

criterion which, obviously, needs to be based on an error

estimator such as (2.10). The construction of such a stopping

rule is suggested by the following two results:

Theorem 2.3: For u0 e HI(I) and under the condition (2.3)

we have

C2 (A) < IJUo-u(S(A))IIE < Cl E(A)

where the constants Cl,C 2 > 0 are independent of S(A).

Theorem 2.4: Under the conditions of theorem 2.2 we have

l(Ak)
k-- 0- i.

For some results about the adaptivity of feedback systers

with transition functions incorporating such stopping criteria

see [1], [9]. It should be noted also that the results in-

dicated here remain valid for finite sets of right-hand sides

f in (2.1).

[ 3. MORE GENERAL PROBLEMS AND THE FEARS SYSTEM

The results sketched in the previous section allow[
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extensions to more general problems in two space dimensions.

In particular, results presented in [2] address the family of

problems and feedback approaches upon which the FEARS-program

[Finite Element Adaptive Research Solver] is based.

For a detailed description of FEARS we refer to [16J and

[23]. In brief, FEARS solves certain systems of elliptic

equations in two space dimensions and permits also combi-

nations with one-dimensional problems, as, for instance, those

needed for modelling stiffeners in elasticity problems. Curved

quadrilateral elements of first order are used. As in (2.9)

error indicators are associated with each element and from

them an estimator (2.10) of the solution-error is obtained.

For details about these a posteriori estimates see [2].

FEARS utilizes various modes of mesh-refinement. In

particular, a so-called long pass involves the recomputation

of the solution on the new mesh, while in a short pass no

such recomputation is performed but instead decisions about

further refinements are based on an extrapolation of the re-

finement patterns observed in previous meshes. Thus, by

combining these short and long passes in various ways differ-

ent feedback mechanisms are obtained.

Theorem 2.1 carries over, in full generality, to tra-

Jectories generated by long passes in FEARS, and the same is

true for Theorem 2.3 (see (3], [4]). On the other hand, the

analogue of Theorem 2.2 is not available in sufficient

generality. Yet, all numerical experiments performed with

FEARS suggest that such a theorem should be valid also in

this case. Theorem 2.4 does extend, however, under certain

additional assumptions about the meshes (see [2]). By ii
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appropriate use of the short passes it is possible to ensure

that the cost of the computation of the solution on the final

meshes of the refinement sequence is proportional to the cumu-

lative cost of the computation up to that point. In fact, ex-

perience shows that the proportionality factor is of the order

of 1.5 to 3.0.

As an illustration we present here an example of the typi-

cal performance of FEARS. More specifically we consider the

problem Au - 0 on the domain shown in Figure 1 with the indi-

cated boundary conditions. The figure shows also the dotted

" X2

1 (,0! r, w_ Wo IFigure 1

(a) (12) 0 1,) 6X2 (5)

XI + 2 2

partition of the domain used in the mesh-construction of FEARS

(see [23]). The solution has a strong singularity at the ori-

gin of the type r /4; that is, the solution belongs to

H5/4" (0) for any e > 0. Hence for sequences of uniform

meshes the rate of convergence is of the order of N-1/8 with

respect to the degrees of freedom N. This is certainly a slow

rate.

Figure 2 depicts the achieved accuracy -- measured in the

energy norm -- as function of the number of elements N' (-N).

More specifically, the true errors are given for a sequence

L (a) of uniform meshes, (b) of adaptively constructed meshes

- -- ---. - -4
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based on the combination of long (L) and short (S) passes

LSLSSLSSSLSSSSLSSSL, and (c) of adaptively constructed meshes

using long passes only. In addition, the computed error esti-

mates are shown. All data are in percent of the square root

of the exact energy

40 8 a * uniform mesh

~30 x adPtive long
passes only

-15 combination of
8 0.- and short

I'- s Figure 2Ijz 0 posse

W 8--__ + error estimator

6-

40 60 100 200 500
NUMBER OF ELEMENTS

The figure indicates that the procedure is convergent in ac-

cordance with the two-dimensional analogue of Theorem 2.1. The

rate of convergence for the adaptively constructed meshes has

the maximum rate N -1,2 , which confirms experimentally the

analogue of Theorem 2.2. Actually we see a slightly better

rate because the higher errors are here principally confined to

a neighborhood of the origin. On the other hand, the rate of

convergence for the uniform meshes is very close to N -1/8 . In

fact, the accuracy of 8.5% obtained by the adaptive mesh of 537

elements would require a uniform mesh of more than 106 elements.

The adaptive meshes based on long passes give better re-

sults than those involving a combination of passes. In de-

pendence of N this is certainly expected. The situation is

different in Figure 3 where the errors are shown in relation

to the total machine time. Here the effectiveness of the

combination of long and short passes shows up very clearly.

i..
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cc e . Adoptive longON k~nfiposses only

short and long Figure 3

W W

2 3 5I1 20 30 100 200

TOTAL MACHINE TIME

Figure 4 gives the earlier mentioned factor of the cost of the

final long pass to the total time for the sequence of long and

short passes. Evidently the factor is of the order of two.

3.0

2.5

Figure 4

1.0

6 10 14 18 22 26 30
RELATIVE ERROR IN ENERGY NORM(%)

Finally, Figure 5 shows the effectivity index

8 - est. error/true error as a function of the achieved accu-

racy. Experience shows that often, but not always, the esti-

mated errors are smaller than the true errors. But for the

L accuracies of 10% or better the effectivity index exceeds 0.9.

[ In line with this, experience has shown that the stopping

m -- • i I _ _
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1.0

S.9

80.8 Figure 5>-'O7

o0.6
.5

w

6 8 10 15 20 30 40

RELATIVE ERROR IN ENERGY NORM (%)

criterion based on the estimators is very reliable. Generally,

the effectivity index is better for smoother solutions; it is

also better for the procedure based only on long passes.

The results discussed here for this single example are

consistent with and typical of all the experimental evidence

we have obtained so far with FEARS.

4. POST-PROCESSING

As mentioned in the Introduction, in practical engineer-

ing computations important decisions are usually based on

relatively few, but highly accurate data items. A very ef-

fective approach to the computation of such data is the appli-

cation of post-processing techniques to the computer so-

lutions. For a detailed study of this approach we refer to

[3]. Here we sketch only the principal ideas for the simple

i



model problem

-Au - 1, on n * (0,1) x (0,1) (4.1)

u a 0, on 39. (4.2)

Suppose that we are interested in the values 0i= u(0,0) and
3u

S- (1,0). The main idea is to write

0 1 f U Jo dx + Rip I - 1,2 (4.3)

where u0  again denotes the exact solution of (4.1)/(4.2) and

the Ri are integrals that may be computed from the input

data. For instance, for 01 we may use

S-A, R, f dx

+C x) -! lull II -lu[L(l+x2)(,+x2 1/22
*(x) - 2 (luuIxil2 2-

Once (4.3) is available, an approximate value of i can be

computed by replacing in (4.3) the exact solution u0  with

the computed solution u(S) (see the notation of Section 2).

Then the error can be written in the form

i - 41 B(u(S)-u 0 0i(' o

where

D(uv) - 'u 'v + 'v ]dx
ax ~ 1 ax 1  ax 2 3x2

and *oi is the solution of -A* - %i subject to the

boundary conditions (4.2) while i(S) is the corresponding
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approximate solution. The computation of Ti(S) can be done

simultaneously with the computation of u(S) at no great

additional expense.

Table 2 shows a comparison of the results for *i and

$2 obtained both from the computed solution u(S) and the

post-processing approach.

No. of elements 4 16 64
in quarter domain

Energy norm error 30.1% 15.2% 7.6%

of u(S)

Error in 0i computed 5.4% 1.3% .31%
from u(S)

Error in 01 computed 2.5% .63% .16%
by post-processing

Error in 02 computed 29% 16% 8.7%

from u(S)

Error in 02 computed 1.3% .32% .076%

from post-processing

Table 2

Table 3 gives the effectivity index for the error esti-

mates of the computed values of i and 02; that is, the

quotient of the estimated error divided by the exact error.

.1
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No. of elements 16 64
in quarter domain

Effectivity index 1.07 .98 .99

for Oi

Effectivity index .93 1.02 1.06
for 02

Table3

5. PROBLEM FORMULATIONS IN THE NONLINEAR CASE

By far the majority of todays finite-element computations

involve linear problems; but, in recent years, the nonlinear

analysis of structural systems has become increasingly im-

portant in engineering applications. Not unexpectedly, there

are many fundamental differences between linear and nonlinear

problems, and, in fact, the problem formulations for the

latter show many special features not present in the linear

case.

First and foremost, it has to be recognized that the

theoretical approaches and computationally techniques depend
strongly on the type and properties of the nonlinearities. In

structural problems we may distinguish four principal sources

Lof nonlinearities, namely (see [11])

(W) geometric nonlinearities, due to nonlinear strain-

displacement relations

(ii) material nonlinearities, due to nonlinear consti-

tutive equations, '
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(il) force nonlinearities, due to nonlinear stress

boundary conditions

iv) kinematic constraint nonlinearities, due to non-

linear displacement boundary conditions.

The source of nonlinearity affects the form of the resulting

nonlinear equations and hence the solution approaches. The

corresponding numerical problems are as yet not completely

understood. This is particularly true for the nonlinearities

of type (ii) to (iv).

As indicated in the Introduction, engineering compu-

tations serve to predict the behavior of a physical system

under study so as to reach decisions about proposed designs.

In the case of structural problems, the term "behavior" refers,

say, to deformations in response to the action of external in-

fluence quantities, such as loads, changes in material pro-

perties and geometrical data, etc. This means that the

equations of the system also depend on a set of influence

parameters and the objective is to assess the behavior of the

solutions under variations of the parameters. In the linear

case, this variation is also assumed to be linear and we need

only compute a few specific solutions to achieve our objective.

In nonlinear problems, however, the computation of a few

specific solutions provides little or no insight into the

behavior of the system and we are led to consider the set of

all solutions depending on all the parameters in a specific

range.

Mathematically, this means that we are faced with para-

metrized equations of the form

• ,--. -.,i
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F(y,X) * b (5.1)

where y varies in a space Y of state (behavior) variables,

X in a parameter space A, F is a given mapping from Y x A

into Y, and b e Y a prescribed element in the range of F.

In general, the set of all solutions (y,X) e Y x A of (5.1)

forms a manifold in Y x A. In structural mechanics, this set

is now usually called the equilibrium manifold of the

structure. The objective then becomes a computational analysis

of the form and characteristic features of this manifold.

Clearly, the specific features to be determined for a

particular problem depend on the objectives of the compu-

tation. Generally, interest centers on computing solutions on

the manifold along specified paths which represent, for in-

stance, particular loading-regimes, etc. Then, the boundaries

of the stability regions on the manifold are to be explored,

and the form of the manifold near specific singularities is to

be determined.

Besides these general objectives, there are various

specific solution data that are needed for certain decisions

about the structure under consideration. A typical example of

this is the so-called question about conservative input data.

In general, the external input data influencing a structure

1. are only known within certain ranges; for instance, this is

certainly true for the loads to which the structure will be

subjected during its lifetime. Thus, for the design it is

[i essential to know the values of the parameters which represent

worst possible cases. These are called conservative input

[data. Their determination represents a search problem on the
solution manifold.K
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As an example, consider a clamped, thin, shallow circular

arch which has been used as a test case by various authors

(see eg. [15], [21]). Let U and W be the radial and axial

displacements, R the arch-radius, A its cross-sectional

area, h the thickness, and E Young's modulus. With the

dimensionless displacements u a U/h, w - W/h, the total

potential energy -- non-dimensionalized by dividing by

EAR(h/R)2 -- is given by

1 I0 -dw._u + ()] de + a' ed 2 2 d - a + pude.
T L 3_L 2 R d dO + dO -'2 f

80 -o 80

Here p - p(e) is the dimensionless radial load and 112

are dimensionless constants. Each end is assumed to be

pinned; that is, we have the boundary conditions

d2u(+e o ) - 0, w(eo ) - 0, (+eo) - 0.

The finite element approximations introduced in (25] were

applied. More specifically, we used a uniform mesh with eight

elements, e0 - 150, and the constants aI - 3.8716 x 10-6,

2 - 8.2752 x 10-2 corresponding to data in (15].

Suppose that the following two-parameter family of loads

is to be considered

for(1 "-( e).,for max(-eo v-TO ) < 0 < V

0

p(IAv)(6) - (l-w(8-)), for v <. min(eosv+- T )

0 , otherwise. ]i
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Thus the load is a piecewise-linear hat-function which has the

value v at 6 * v and is zero outside the interval centered

at v of width 0 /2. For any fixed position v the path on

the manifold determined by varying u encounters a first

limit point which represents a point where the arch Is expect-

ed to buckle. Figure 6 shows the variation of this buckling

load with the value of v. We see that the most dangerous

loads occur about for v - +o.160; hence, these values repre-

sent the desired conservative data. The computations were

performed with the limit-point facilities of the continuation

package PITCON (see [19]).

-80/2 66/2

Figure 6

6. ERROR ESTIMATES

As In the linear case, a desirable feature for nonlinear

structural computations is the estimation of the errors of the
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computed results. But, not unexpectedly, for nonlinear

problems the situation is considerably more difficult and much

remains to be done. In fact, for the solutions of the para-

metrized equations of the previous section, it is not always

readily apparent how to define the error. In fact, if, say,
I

9 denotes the equilibrium manifold of a given infinite-

dimensional equation (5.1) and i is the solution manifold of

a finite-dimensional approximation of this equation, then it is

not obvious how to relate points of M and A. Frequently,

the parameter space A of (5.1) is finite-dimensional and

hence there is no need to discretize A e A. In that case, we

might wish to compare points of M and M corresponding to

the same values of A. But already simple examples show that

for specific A there may exist a point only on one of the two

manifolds.

In order to resolve this problem it is necessary to con-

sider first the equation of a priori estimates for parametrized

equations. For mildly nonlinear elliptic boundary value

problems and one-dimensional parameter spaces such estimates

were first developed in [10]. A different approach was used in

[12) to provide similar results for more general boundary value

problems. In [133 this approach was extended to the case of

any finite-dimensional parameter space. We present here only a

brief summary of the results in [12], [13].

Let XY be Banach-spaces and F: S C X - Y a mapping of

class Cr(S), r > 1, on an (pen connected subset S of X.

Suppose that F is a Fredholm operator of index m >_ 1 on S

and that the regularity set R(F) {x c S; rge DF(x) a Y} is

non-empty. Then R(F) is an open subset of X and for any

'1ne
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regular value b e F(R(F)) the regular solution set

.-4(b) - {x e R(F); F(x) a b}

in an m-dimensional Cr-manifold in X. For proofs we refer to

[12].

For any theoretical and computational study of M(b) we

need to specify which local parametrizations of the manifold

we will use. At a point x0 e M(b) a local parametrization

of M(b) shall be a triple {V,A,T} consisting of

(i) a closed subspace V of X such that

V 0 ker DF(x ) - {O},

(ii) an isomorphism A e L(YV) from Y onto V, and

(iii) an m-dimensional subspace T of X such that

X - V GT.

The meaning of this concept is contained in the following re-

sult (see [12]):

Theorem 6.1: Under the stated conditions for F and 4(b),

let {V,A,T} be a local parametrization of the manifold at

20 P A(b). Then there exists an open ball Bc T with 0 c B,

an open neighborhood U C X of xo, and a unique C r-function

n: B * Y such that

4(b)(1 U - {x e X; x - x0 + t + An(t), Vt e B}.

The geometric interpretation is sketched in the composite

Figure 7. In many applications certain parameters are identi-

fied explicitly; that is, one has a natural splitting

X Z, dim Z = m, where W is isomorphic with the range
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space Y. The question then arises at what points x0 c 44(b)

this natural splitting gives rise to a local parametrization;

that is, when the given parameters can be used to parametrize

the manifold near xo. Clearly, the condition here is

W r% ker DF(x ) - {0} and this holds exactly if rge DwF(xo) -Y.

Then {W,DWF(xo)- ,Z} indeed is a local parametrization of

9(b) at xo . Such points are called nonsingular points of

M(b) with respect to the natural parameters.

At points x0 E M(b) where Wfl ker DF(x ) # (01 the

natural parameters cannot be used to parametrize P4(b). Such

points can be characterized by the dimension of this inter-

section. The simplest case arises when dim(Wtl ker DF(x ))-3

these are limit points with respect to the direction of the

intersection. For more details we refer to L13].

We turn now to a discretization of our problem. Once

again, it is useful to assume the existence of a natural

splitting X - W 4 Z, dim Z = m, where W is isomorphic with

Y. More specifically, we assume that there is an operator Q

such that

Q e L(XY), Z - ker Q, rge QJW - Y.

Often we have F: SC Y x Rm - Y in which case Q can be

taken as the natural projection from Y x Rm onto Y.

The natural splitting has to be considered since in such

applications only the state space W is discretized and the

parameters are left untouched. Suppose now that the discreti-

zation is defined by a family of linear maps Ph e L(Y) of

finite rank indexed by a positive h > 0 such that

lim, P y for all y e Y. Then the finite-dimensional sub-j
h-oO

A ~ 4~4pNZb AM
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spaces

Yh P hY C Y Wh - (QIW)-'Yh C W, Xh Wh 0 Z C X

are well-defined and we may consider the approximating problem

Fh(x) - Yoh' x C R(Fh), Yoh ' PhYo

(6.1)

Fh: ShC Xh -* Yh' Fh(x) - PhF(x), x C Sh - S r) Xh.

In order to compare the solution manifolds of these discretized

problems with M(b) we need to assume that the approximation

is sufficiently close to ensure that the same local para-

metrization can be used

on these manifolds,

(see Figure 7). As a

usual, a stability con-

dition is required to Ot t- M2 T

ensure the convergence.

Without elaborating

upon the specific de-

tails of this condition,

we sketch here only the

general form of the re-

sulting theorems (see

[123 and [133): Figure 7

Theorem 6.2: Under the stated conditions about F and 4(b),

let (VOAT} be a local parametrization of M(b) at

i e U(b) and suppose that the indicated stability condition

holds. Then, for all sufficiently small h > 0, the approxi-

_ _ _ .W_
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mate problems (6.1) possess solutions Xoh E R(Fh) for which

litm Xoh x 0.h 0

Theorem 6.3: In addition to the conditions of Theorem 6.2,

let DF be Lipschitz-continuous on bounded subsets of S C X.

Denote by x: B C T * S the representation of 41(b) near xo

defined on the open ball B C T, 0 c B. Then there exists a

closed ball B0 C B, 0 e B such that for all sufficiently

small h > 0 the approximate problems have solutions

Xh: B * Sh  for which

Ilx(t)xh(t)I CII(IPh)Qx(t)II, t e Bo  (6.2)

where the constant C is independent of h and t.

As a typical example consider the mildly nonlinear

problem in the weak form

a(u,w) + J g(u,))wd& - 0, we Hi(Q), X e R,

where n is a suitable bounded domain in Rn, and the bilinear

form

a(u,w) - aC) 3u d&, u,w e (n)

has sufficiently smooth coefficients and is strongly elliptic.

Then the operator K: L2 (0) * HI(n) defined by

a(Ku,w) - (u,w)o, u e L2(Q), w e 91 (g), is compact and the

problem is equivalent with

u + KG(u,X) - Yo ]
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where G: A1(0) x Rm . L2 (0) is defined by the Cr-map g. It

turns out that this is a Fredholm map of index m and that,

with Q as the natural projection from ;11(n) x Rm  onto

p i(M), the mentioned stability condition is satisfies and

Theorems 6.2 and 6.3 apply.

On the basis of a priori estimates of the form (6.2) we

can now develop a posteriori error estimates along the same

lines as for the linear problems. Some examples for this are

presented in [71 and, as in the linear case, the effectivity

of these estimates turns out to be consistently high. However,

the theory of these a posteriori estimates for nonlinear

problems is not, as yet, very well developed and, in particular,

such results as Theorem 2.3 are still lacking. In (7] it was

shown also that a posteriori estimates can be constructed

for buckling loads and the location of limit points.

7. CONTINUATION PROCESSES

For the computational analysis of the solution manifolds

considered here the basic methods are general continuation

processes for the trace of specified paths on the manifold.

If the problem formulation involves natural parameters, then

these paths are defined usually by combinations of the para-

meter values with one degree of freedom. But interest may

center also on paths which are specified implicitly, for

examle, as paths in the critical boundary of the problem (see

eg. [17)).

The literature on continuation methods is rather large.

For a survey relating to structural mechanics we refer only to
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[20] where also further references may be found. No attempt

shall be made to present here the details of these methods.

Broadly speaking a typical such process (PITCON, (19]) in-

volves the following steps:

(1) Compute the (normalized) tangent vector at the

current point on the path.

(2) Determine a new local parametrization of the path

near this point.

(3) Determine a steplength.

(4) Use the steplength to compute a predicted point

further along the path.

(5) Start a corrector iteration from the predicted point

to obtain a new point (approximately) on the path.

The overall process uses extensive feedback as the basis of

the various decisions. This is particularly true for the

above steps (2), (3), and (5). The feedback mechanisms used

here are often rather complex in nature, and this raises the

question whether the overall process can be shown to be

adaptive in the sense of Section 2. Up to now, no such re-

sults have been formulated, although, there appears to be the

possibility of proving at least some partial results. There

is certainly a need for more studies of this area.

On the basis of the estimates of the previous section it

turns out that the discretization errors along any continuaticn

path often vary considerably. On the other hand, our

objectives usually require that these errors be maintained

reasonably well within a tolerance interval. This suggests

again the use of mesh-refinements (and dc-refinements) in
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conjunction with the continuation process.

In its simplest form such a combined process begins with

a mesh that meets a prescribed error-tolerance requirement.

Then, during the continuation process, the error estimators

are monitored and, at any computed point where these esti-

mators exceed the upper tolerance a mesh-refinement strategy

is applied to meet the tolerance requirement. Similarly, we

may work also'with a lower error tolerance and de-refine the

mesh whenever the estimates fall below that lower value.

Figure 8 indicates the effect of such a strategy for a

problem involving a nonlinear rod. We shall not present here

the details of the problem-formulation but refer, for that, to

[T]. In brief, the indicated values of N refer to the

number of quadratic C°-elements that were used during the

corresponding segments of the path. The error tolerance was

2%. Since the continuation process takes relatively large

steps along the path, there is no guarantee that between these

points the error tolerance does not exceed the required

tolerance. A more sophisticated control-strategy may

alleviate the situation somewhat. At the same time, problems

of this type cause difficulties in developing theoretical re-

sults of the type of Theorems 2.1 and 2.2 for the combined

continuation and mesh-refinement processes. The level of ex-

pected difficulty of such results for nonlinear problems

suggests that at first some emphasis should be placed upon

carefully designed experiments which confirm or refute various

conjectures about the adaptivity of the feedback mechanisms

that are used in these settings.

I.
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